MRI guided electrophysiological intervention with a voltage-based electro-anatomic mapping system
نویسندگان
چکیده
Background MRI visualizes luminal & vessel-wall anatomy, and identifies edema & scar tissue, contributing to improved electrophysiological (EP) ablative procedures for treatment of Ventricular Tachycardia & Atrial Fibrillation. MRI-guided EP interventions will be performed for the foreseeable future partially in & outside MRI, due to the need for X-ray/Ultrasound-compliant devices. Electromagnetically tracked catheter procedures, today’s norm for most EP procedure phases; vascular navigation, Electro-Anatomic-Mapping (EAM, the diagnostic and therapeutic phases), can only be performed outside MRI. Separate MRI tracking is required in MRI, complicating EP procedures which require moving in & out of the bore [1,2]. Continuous catheter tracking using a single system would allow registration-free EAM in & outside MRI. The goal was developing an MR-compatible St. Jude Medical (SJM) EnSite NavX (ESN) voltage-based tracking [3]. ESN applies 5.8/8.0 kHz voltage bursts between 3 pairs of electrodes on the chest, detecting a catheter’s position [4], so a challenge for intra-MRI use is MR gradient ramps which interfere with ESN operation. Minimal MR Image Quality (IQ) reduction also needs to be insured, as well as <2oC patient-skin heating due to components in MRI.
منابع مشابه
Voltage-based device tracking in a 1.5 Tesla MRI during imaging: initial validation in swine models.
PURPOSE Voltage-based device-tracking (VDT) systems are commonly used for tracking invasive devices in electrophysiological cardiac-arrhythmia therapy. During electrophysiological procedures, electro-anatomic mapping workstations provide guidance by integrating VDT location and intracardiac electrocardiogram information with X-ray, computerized tomography, ultrasound, and MR images. MR assists ...
متن کاملMRI-compatible voltage-based electroanatomic mapping system for 3T MR-guided cardiac electrophysiology: swine validations
Background MRI provides luminal, edema, & scar images which assist in the Electrophysiological (EP) treatment of ventricular and atrial arrhythmias]. Until a complete set of MR-compatible EP-devices is available, patients must be repeatedly moved between the MRI, where imaging and mapping occur, to the conventional EP suite, where puncture, navigation and Radio-Frequency Ablation occur. MRI-con...
متن کاملVoltage-based electroanatomic mapping system for MR-guided cardiac electrophysiology: preliminary swine validations
Background MRI produces images that serve as luminal, edema, & scar maps to assist in the Electrophysiological (EP) treatment of ventricular and atrial arrhythmias [1]. Until MR-compatible EP devices are widely available, there will be a need to perform EP partially in the MRI for imaging, and partially outside the MRI for ablation, puncture & navigation. An MR-conditional voltage-based Electro...
متن کاملFeasibility of real time integration of high-resolution scar images with invasive electrograms in electro-anatomical mapping system in patients undergoing ventricular tachycardia ablation
Background Ventricular tachycardia (VT) ablation is generally guided by invasive mapping of the left ventricle (LV) using electro-anatomical voltage mapping (EAM) to identify the VT substrate [1]. Late gadolinium enhancement (LGE) MRI allows excellent visualization of the scar. Heterogeneous area in LGE images has been shown to correlate with the VT substrate in animal models of VT. Retrospecti...
متن کاملVURTIGO: Visualization Platform for Real-Time, MRI-Guided Cardiac Electroanatomic Mapping
Guidance of electrophysiological (EP) procedures by magnetic resonance imaging (MRI) has significant advantages over x-ray fluoroscopy. Display of electroanatomic mapping (EAM) during an intervention fused with a prior MR volume and DE-MRI derived tissue classification should improve the accuracy of cardiac resynchronization therapy (CRT) for ventricular arrhythmias. Improved accuracy in the sp...
متن کامل